website: www.ijoetr.com # International Journal of Emerging Trends in Research # Impact of System Utilization on Setup Oriented Performance Measures in a Stochastic Dynamic Job Shop Manufacturing System ## Pankaj Sharma¹ ¹ Department of Mechanical Engineering, G J University of Science and Technology, Hisar (India) ## **Abstract** The various industries such as automobile industry, aerospace industry, printing industry, and chemical industry operate on job shop system. Job shop scheduling problems are complex and real world. The present work assesses the effect of change in shop utilizations levels on total setups and mean setup time measures. The simulation model of the job shop is developed for investigation purpose. Three levels of shop utilization i.e. 90%, 85% and 80% are considered in order to assess the effect of change in shop utilization levels on system performance. Simulation results indicate that the change in shop utilization levels has a significant effect on system performance. **Keywords:** Scheduling, Stochastic Dynamic Job Shop, Simulation ## 1. Introduction Shop scheduling in a system is concerned with allocation of set of jobs on a set of production resources over time to achieve some objectives. In a job shop, jobs are processed on a set of machines. Each job has its specific operation order. The job shop scheduling problem is a combinatorial optimization problem and one of the most complex problem among various production scheduling problems (Garey et al., 1976; Xiong et al., 2013). In a dynamic job shop scheduling problem jobs arrive continuously in the manufacturing system. In a stochastic dynamic job shop (SDJS) scheduling problem at least one parameter of the job (release time/processing time or setup time) is probabilistic (Kim and Bobrowski, 1994; Kim and Bobrowski, 1997). Scheduling rules are used to select the next job to be processed from the set of jobs awaiting processing in the input queue of a machine. Dispatching rules are also named as sequencing or scheduling rules. A setup operation often occurs while shifting from one type of operation to another. Setup time is a time required to prepare the resources such as machines to perform a operation (Ali and Soroush, 2008). Sequence-dependent setup time depends on both current and immediately preceding operation (Ali and Soroush, 2008). Manikas and Chang (2009) and Fantahun and Mingyuan (2012) reported that in job shop scheduling problems with sequence-dependent setup times limited research is available. Dispatching rules are used to select the next job to be processed from the set of jobs awaiting processing in the input queue of a machine. Dispatching rules are also named as sequencing or scheduling rules. Blackstone et al. (1982) presented a survey of scheduling rules used in job shop scheduling problems. Jayamohan and Rajendran (2000) proposed seven dispatching rules for minimizing performance measures such as mean flow time, maximum flow time, variance of flow time and tardiness in dynamic shops. The proposed rules are found to be effective in minimizing different performance measures.Ramasesh (1990) provides review of simulation research in dynamic job shop scheduling problems. Allahverdi et al. (1999) provides a survey of literature on scheduling problems with setup times/costs. Panwalkar et al. (1977) presented a survey of scheduling rules used in manufacturing systems. Jain et al. (2004) developed four new dispatching rules for makespan, mean flow time, maximum flow time and variance of flow time measures in a flexible manufacturing system. They observed that the proposed dispatching rules are superior compared to existing rules. Wilbrecht and Prescott (1969) studied the influence of setup times on dynamic job shop scheduling problems. They concluded that job with Smallest Setup Time (SIMSET) rule outperforms other existing scheduling rules. Kim and Bobrowski (1994) studied impact of sequence-dependent setup times on the performance of a dynamic job shop scheduling problems and concluded that setup oriented scheduling rules i.e. SIMSET and job with similar setup and Critical Ratio (JCR) provides better performance compared to ordinary scheduling rules such as Shortest Processing Time (SPT) and Critical Ratio (CR) for mean flow time, mean work-in-process inventory, mean finished good inventory, mean tardiness, proportion of tardy jobs, mean machine utilization, mean setup time per job, mean number of setups per job and mean total cost per day performance measures. Vinod and Sridharan (2008) proposed and assessed performance of five setup oriented scheduling rules. They concluded that proposed rules provides better performance than the existing scheduling rules for mean flow time, mean tardiness, mean setup time and mean number of setups performance measures. Sharma and Jain (2015) proposed four new setup oriented dispatching rules viz. (i) shortest sum of time to due date, setup time and processing time (TDDSSPT) (ii) job with similar setup and shortest sum of time to due date, setup time and processing time (JTDDSSPT) (iii) job with similar setup and shortest SLACK (JSLACK) and (iv) job with similar setup and shortest SLACK per unit work (JSLACKW) for stochastic job shop manufacturing systems considering sequence-dependent setup times. The performance of the system was evaluated in terms of mean flow time, mean tardiness and mean setup time measures. They concluded that the proposed dispatching rules provided better performance for considered measures. The remainder of the paper is organized as follows. Section 2 describes salient aspects of configuration of the SDJS scheduling problem. The outline for development of simulation model is explained in section 3. Section 4 presents details of simulation experimentations. Section 5 provides analysis of experimental results. Finally, section 6 gives concluding remarks and directions for future work. ## 2. Job Shop Configuration In the present work, a job shop scheduling problem with ten machines is selected that is based on configuration of job shop considered by various researchers (Wilbrecht and Presscott, 1969). Six different types of jobs i.e. job type A, job type B, job type C, job type D, job type E and job type F arrive at the manufacturing system and all the job types have equal probability of arrival. Job types A, B, C, D, E and F require 5, 4, 4, 5, 4 and 5 operations respectively. Table 1 shows the machines visited by different job types in their routes. The processing times and setup times of each job are stochastic. They are assumed to be uniformly distributed on each machine. Processing time changes according to job type and route of the job. Table 2 list the processing times of each job on the each machine according to its route. The selection of pattern of processing times on various machines is based on research work carried out by previous researcher (Baykasoglu et al., 2008). Table 3 shows the sequence-dependent setup times which encounters while shifting from one job type to another. ## 2.1. Inter-arrival time It is average time between arrivals of two jobs. It is exponentially distributed and based on research work carried out by various researchers and calculated using the following relationship (Wilbrecht and Presscott, 1969). $$b = \frac{1}{\lambda} = \frac{\mu_p \mu_g}{UM} \tag{1}$$ Where, b=Mean inter-arrival time, λ =Mean job arrival rate, μ_p =Mean processing time per operation (including setup time), μ_g =Mean number of operations per job, U=Shop utilization, M=Number of machines in the shop In the present work, μ_p is computed by taking the mean of mean processing times of all operations (from Table 2) plus mean of mean setup times (from Table 3). Thus, μ_p =19. 45. For the taken input data, μ_g is 4.5 with M=10. In the present work, experiments are carried out at shop utilization (U) = 90%, 85% and 80%. Van Parunak (1991) observed that due to stochastic nature of processing times and setup times, the actual shop load is approximated and fall within a range of \pm 1.5% of the target value. ## 2.2. Due date of jobs It is time at which job order must be completed. The total work content (TWK) method is used to assign due date of the job (Vinod and Sridharan, 2008; Yu and Ram, 2006; Baker, 1984) and calculated using the following relationship. $$d_i = a_i + k(p_i + n_i \times u_i) \tag{2}$$ Where, d_i = Due date of job i, a_i = Arrival time of job i, k = Due date tightness factor, p_i =Mean total processing times of all the operations of job i, n_i = Number of operations of job i, u_i = Mean of mean setup times of all the changeover of job i. In the present study, due date tightness factor (k) = 3 is considered. Table 1. Routes of job types | Job type | Number of operations | Route of the job (Machine number) | |----------|----------------------|-----------------------------------| | A | 5 | 1-6-10-2-4 | | В | 4 | 8-3-5-10 | | C | 4 | 7-9-3-1 | | D | 5 | 5-7-9-2-4 | | E | 4 | 2-8-1-10 | | F | 5 | 6-9-1-3-5 | ## 3. Structure of Simulation Model Using simulation modeling a discrete event simulation model for the operations of SDJS manufacturing system with each dispatching rule is developed using PROMODEL software. While developing simulation model, following assumptions are made. - Each machine can perform at most one operation at a time. - An operation cannot start until its previous operation is finished. - The arrival of jobs in the job shop is dynamic and a type of job is unknown until it arrives in the shop. - Unlimited capacity buffer is considered before and after each machine. - Processing times and setup times are stochastic. Both are known with their distribution in priori. ## 3.1. Dispatching rules Dispatching rule is used for selecting job for an operation on the machine from a set of jobs present in input buffer of machine. Table 4 shows thirteen dispatching rules as identified from the literature which are used for making job sequencing decision (Wilbrecht and Prescott, 1969; Vinod and Sridharan, 2008; Sharma and Jain, 2015). The four setup oriented dispatching rules proposed by Sharma and Jain (2015) are as follows: (i) Shortest sum of time to due date, setup time and processing time (TDDSSPT) (ii) Job with similar setup and shortest sum of time to due date, setup time and processing time (JTDDSSPT) (iii) Job with similar setup and shortest SLACK (JSLACK) (iv) Job with similar setup and shortest SLACK per unit work (JSLACKW). ## 3.2. Performance measures In the present work, the performance measures used for evaluation purpose in experimental investigations are as follows: • Total setups (*TSP*): It is value of the number of setups that encounters during processing of jobs. $$TSP = \sum_{i=1}^{n} \delta(P_i)$$ (3) Here, $\delta(P_i) = 1$ if $P_i > 0$ and $\delta(P_i) = 0$, otherwise. • Mean setup time (MST): It is average time that a job spends for the setup during processing. $$MST = \frac{1}{n} \left[\sum_{i=1}^{n} S_i \right] \tag{4}$$ Here S_i =Setup time of job i Table 2. Processing times of jobs on machines according to routes | Job type | Processing times of jobs according to machines | |----------|--| | A | U(10,11), U(14,15), U(17,18), U(16,17), (18,19) | | В | U(17,18), U(10,11), U(19,20), U(13,14) | | C | U(17,18), U(11,12), U(16,17), U(13,14) | | D | U(12,13), U(19,20), U(16,17), U(10,11), U(17,18) | | E | U(13,14), U(19,20), U(10,11), U(16,17) | | F | U(19,20), U(13,14), U(15,16), U(10,11), U(14,15) | ## 4. Experimental Design for Simulation Study Using simulation modeling, a number of experiments on SDJS scheduling problem are conducted. The first stage in simulation experimentation is identification of steady state period i.e. end of the initial transient period. For this purpose, Welch's procedure described in Law and Kelton (1991) is used. A pilot study for SDJS scheduling problem is conducted with SPT dispatching rule and 30 replications are considered for simulation experimentation. For each replication, simulation is made to run for 20000 jobs completion. It is found that manufacturing system reaches steady state at 5000 jobs completion. Finally, the experimental investigation is carried out to analyze the performance of six dispatching rules identified from literature in a SDJS scheduling problem for 20000 jobs completion (after warm up period of 5000 jobs). Table 3. Job types/sequence-dependent setup times data | | | | Follower job type | | | 2 | |-----------|-----------|-----------|-------------------|-----------|-----------|-----------| | Preceding | | | | | | | | job type | e A | В | C | D | E | F | | A | 0 | U(5,5.25) | U(5,5.75) | U(5,5.50) | U(5,5.50) | U(5,5.25) | | В | U(5,5.50) | 0 | U(5,5.25) | U(5,5.75) | U(5,5.25) | U(5,5.50) | | C | U(5,5.25) | U(5,5.50) | 0 | U(5,5.50) | U(5,5.75) | U(5,5.25) | | D | U(5,5.75) | U(5,5.25) | U(5,5.50) | 0 | U(5,5.25) | U(5,5.50) | | E | U(5,5.50) | U(5,5.75) | U(5,5.25) | U(5,5.50) | 0 | U(5,5.25) | | F | U(5,5.25) | U(5,5.50) | U(5,5.75) | U(5,5.25) | U(5,5.50) | 0 | Table 4. Dispatching rules | Dispatching Rule | Description | |------------------|---| | FCFS | First-come-first-serve | | SPT | Shortest processing time | | SIMSET | Shortest setup time | | EDD | Earliest Due date | | SSPT | Smallest sum of setup time and processing time | | JSPT | Job with similar setup and shortest processing time | | JEDD | Job with similar setup and earliest due date | | JMEDD | Job with similar setup and modified earliest due date | | JSSPT | Job with similar setup and shortest sum of setup time and processing time | | TDDSSPT | Shortest sum of time to due date, setup time and processing ime | | JTDDSSPT | Job with similar setup and shortest sum of time to due date, setup time and processing time | | JSLACK | Job with similar setup and shortest SLACK | | JSLACKW | Job with similar setup and shortest SLACK per unit work | #### 5. Results and Discussion Three different shop utilization levels i.e. U=90%, U=85% and U=80% are considered in order to investigate the effect of change in shop utilization level on manufacturing system performance. Since dispatching rules and shop utilization levels are two experimental factors, 1080 (03 shop utilizations level x 13 dispatching rules x 30 replications) simulation runs are performed for evaluation purpose. The mean values of 30 replications for 39 simulation experiments are shown in figures 1-2 for total setups and mean setup time measures respectively. Figures 1-2 illustrate that for dispatching rules with similar setup logic i.e. JSPT, JEDD, JMEDD, JSSPT, JTDDSSPT, JSLACK and JSLACKW, the total setups and mean setup time performance measures increases as shop utilization decreases from 90% to 80%. This is due to the fact that at lower shop utilization, the arrival rate of the jobs is less and hence, there will be less number of similar types of jobs at any given time which results in increased performance measures values. Further, for dispatching rules that don't consider similar setup logic i.e. FCFS, SPT, SIMSET, EDD, SSPT, and TDDSSPT, the total setups and mean setup time performance measures values are nearly same at all considered shop utilization levels. The above discussion clearly reveals that the shop utilization level is an important parameter and it affects the system performance as measured by total setups and mean setup time measures respectively. Figure 1. Effect of shop utilization on total setups Figure 2.Effect of shop utilization on mean setup time ## 6. Conclusions The present work addresses a SDJS manufacturing system with sequence-dependent setup times. A simulation model of such system is developed. The results indicate that for dispatching rules with similar setup logic i.e. JSPT, JEDD, JMEDD, JSSPT, JTDDSSPT, JSLACK and JSLACKW, the total setups and mean setup time performance measures increases as shop utilization decreases from 90% to 80%. Further, for dispatching rules that don't consider similar setup logic i.e. FCFS, SPT, SIMSET, EDD, SSPT, and TDDSSPT, the total setups and mean setup time performance measures values are nearly same at all considered shop utilization levels. Furthermore, future research work could be expanded by considering situations like limited capacity buffer between machines, schedule in batch mode, breakdown of machine and external disturbances like cancellation of order and pre-emption of job in SDJS scheduling problem with sequence-dependent setup times. #### References - [1] Ali A, Soroush HM. The significance of reducing setup time/setup costs. *European Journal of Operational Research* 2008; 187: 978-984. - [2] Allahverdi A, Gupta JND, Aldowaisan T. A review of scheduling research involving setup considerations. *Omega* 1999; 27: 219–239. - [3] Baker K.R. Sequencing rules and due-date assignments in a job shop, *Management Science* 1984; 30:1093-1104. - [4] Blackstone JH, Philips DT, Hogg GL. A state-of-the-art survey of dispatching rules for manufacturing job shop operations. *International Journal of Production Research* 1982; 20: 27-45. - [5] Baykasoglu A, Göçken M, Unutmaz ZD. New approaches to due date assignment in job shops. *European Journal of Operational Research* 2008; 187: 31-45. - [6] Fantahun MD, Mingyuan C. Job shop lot streaming with routing flexibility, sequence-dependent setups, machine release dates and lag time. *International Journal of Production Research* 2012; 50: 2331-2352. - [7] Garey MR, Johnson DS, Sethi R. The complexity of flow shop and job shop scheduling. *Mathematics of Operations Research* 1976; 1:117-129. - [8] Jain A, Jain PK, Singh IP. An investigation on the performance of dispatching rules in FMS scheduling. *International journal of simulation modeling* 2004; 3:49-60. - [9] Jayamohan MS, Rajendran C. New dispatching rules for shop scheduling: A step forward. International Journal of Production Research 2000; 38: 563-586. - [10] Kim SC, Bobrowski PM. Impact of sequence dependent setup time on job shop scheduling performance. *International Journal of Production Research* 1994; 32:1503-1520. - [11] Kim SC, Bobrowski PM. Scheduling jobs with uncertain setup times and sequence dependent. *International Journal of Management Science* 1997; 25: 437-447. - [12] Law AM, Kelton WD. Simulation modeling and analysis. New York: McGraw-Hill;1991. - [13] Manikas A, Chang YL. Multi-criteria sequence-dependent job shop scheduling using genetic algorithms. *Computers and Industrial Engineering* 2009; 56:179-185. - [14] Panwalkar SS, Iskander W. A survey of scheduling rules. *Operations Research* 1977; 25: 45-61. - [15] Ramasesh R. Dynamic job shop scheduling: a survey of research. *Omega: International Journal of Management Science* 1990; 18: 43-57. - [16] Sharma, P, Jain, A. New setup-oriented dispatching rules for a stochastic dynamic job shop manufacturing system with sequence-dependent setup times. Concurrent Engineering: Research and Applications, 2015, DOI: 10.1177/1063293X15599814. - [17] Vinod V, Sridharan R. Dynamic job shop scheduling with sequence- dependent setup times: Simulation modelling and analysis. *International Journal of Advanced Manufacturing Technology* 2008; 36: 355-372. - [18] Van Parunak H. Characterizing the manufacturing scheduling problem. *Journal of Manufacturing Systems* 1991; 10: 241-259. - [19] Wilbrecht JK, Presscott WR. The influence of setup time on job shop performance. *Management Science* 1969; 16: 274-280. - [20] Xiong J, Xing LN, Chen YW. Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns. *International Journal of Production Economics* 2013; 141: 112-126. - [21] Yu X, Ram B. Bio-inspired Scheduling for dynamic job shops with flexible routing and sequence dependent setups. *International Journal of Production Research* 2006; 44:4793-4813.